TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATIC

EXAMINATION FOR PROSPECTIVE STUDENTS (4TH YEAR) STUDENTS OFMATHEMATICS

COURSE TITLE: GENERAL RELATIVITY

COURSE CODE:MA4113

DATE:27/12/2016

TERM:FIRST TOTAL AS

TOTAL ASSESSMENT MARKS

TIME ALLOWED: 2HOURS

Answer fife questions:

[1] (a) Prove that $ds^2 = dx^2 + dy^2 + dz^2$ in parabolic coordinates (ξ, η, φ) given as $ds^2 = (\xi^2 + \eta^2)d\xi^2 + (\xi^2 + \eta^2)d\eta^2 + \eta\xi d\varphi^2$

where $x = \xi \eta \cos \varphi$, $y = \xi \eta \sin \varphi$, $z = (\xi^2 - \eta^2)/2$.

- (b) When A_i is a vector, find and prove that the transformation law for $B_{ij} = \frac{\partial A_i}{\partial x^j} \frac{\partial A_j}{\partial x^i}$ is tensor
- [2] \circ (a) The equation $K(ij)A_{jk} = B_{ik}$ holds for all the coordinates systems. If A and B are second-rank tensors, show that K is a second tensor also.
 - (b) Use the question [3] (b) and Obtain the equations of the geodesic for the same metric
- [3] (a) Prove that $B_{i;j}$ is tensor of rank two and Riemann-Christoffel's tensor $B_{\mu\nu\sigma}^{\rho}$.
 - (b) Find the fundamental metric and Christoffel's symbols to the metric

$$ds^{2} = dt^{2} - e^{2kt} \left(dx^{2} + dy^{2} + dz^{2} \right)$$

Dr. Mohamed Khalifa

EXAMINERS	DR./MOHAMED ABDOU KHALIFA	DR/	
	PROF./ SLIM ALI MOHAMMADEIN	DR/	

ریا میاد ن

Tanta University
Faculty of Science
Mathematics Dept.

Year: 4

Pages of questions: only one page

Date: 1/1/2017 Time allowed: 3 h Full Degree: 150

Subject: Topology 2

Answer the following questions

Question 1:

- 1. Prove that a continuous one-to-one function from a compact space onto a Hausdorff space is homeomorphism.
- 2. Show that every subset from a co-finite topology is compact.

Question 2:

- 1. Prove that every compact Hausdorff space is T_4 .
- 2. For a continuous mapping $f:(X,\tau_1, T_1) \to (Y,\tau_2)$. Prove that the inverse image of points in Y is closed set in X.

Question 3:

- 1. State with proof Hein-Borel Theorem.
- 2. If $X = \{a, b, c\}$ with a topology $\tau = \{X, \varphi, \{a\}, \{b, c\}\}$. Discuss the regularity, normality, T_3 and T_4 .

Question 4:

- 1. For every topological space (X, τ) and $A \subset X$, prove that X is compact iff for all \Im of closed subsets of X having a finite intersection property has $\bigcap \Im \neq \emptyset$.
- 2. Prove that the usual topology is Hausdorff.

Question 5:

- 1. Prove that a space X is T_1 iff for every singleton is closed.
- 2. If $X = \{a, b, c, d\}$ with a topology $\tau = \{X, \varphi, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Discuss T_0' , T_1' , T_1'' and T_2''

TANTA UNIVERSITY

FACULTY OF SCINCE - MATHEMATICS DEP.

FOURTH YEAR.

MA4103

5 JAN. 2017

TERM: FIRST

FLUID MECHANICS 1 TOTAL ASSESSMENT MARKS: 150

TIME ALLOWED: 2 HOURS

Please answer the following questions

1A. The velocity of fluid flow in 2D is given by

V = yz i + yt j + zk

through a surface of vertices (0, 5, 7), (0, 11, 7), and (0, 8, A1). If the volume flux Q = 918 (L³ T⁻¹), then calculate the constant A1, kind of surface, and average velocity.

1B. Calculate the acceleration components a_x and a_y of fluid flow by Euler and Lagrangian methods for fluid velocity

$$V = x^t \underline{i} + t^x \underline{j}$$

[45 Marks]

2A. The fluid velocity is a function of fluid density ρ , gravity g, depth h, and time t. Rewrite the relation between these parameters using Pi theory. [Hint: ρ , h, and g, are basic parameters]

2B. Find the non-dimensional form of the following equation

$$\rho \frac{dV}{dt} = \mu \frac{d^2V}{dx^2} - \int dP - \frac{\gamma}{R}$$

and then find the non-dimensional numbers

[35 Marks]

3A.If the velocity potential $\Phi = 2xy$, find and plot $\Psi(x, y)$, and path line

3B. For the 2D fluid flow, find and plot Ψ for two components velocities $u = 3 + e^{-x}$ $v = 3 - e^{y}$

[35 Marks]

4. The velocity components of fluid flow $u=3(x^2-z^2)$, v=0, w=-6xz satisfied the solution of Navier-Stokes equations. Find the pressure distribution.[Hint: $g_x = g_v = 0$, $g_z = -g k$ [35 Marks]

والتوقيق و النواح

لجنة الأسنلة: ١٠. سليم على غُدين. أ.د. مجدى سرواح.

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS

EXAMINATION FOR COMPUTER SCIENCE (FOURITH YEAR) STUDENTS

DATE: 17/1/2017 TERM: SECOND TOTAL ASSESS, MARKS: 150 TIME ALLOWED: 2 H.

ANSWER THE FOLLOWING QUSETION:

[1] Find the set of all feasible solution and determine the optimal one graphically of the LP: (35 deg.)

$$LP \begin{cases} \max \quad z = -x_1 + 2x_2 \\ s.t. \quad x_1 + 2x_2 \le 20, \\ 1.5x_1 - 5x_2 \le 15, \end{cases} \qquad 2x_1 \circ x_2 \le 30,$$

[2] By simplex method solve of linear program:

(40 deg.)

(LP):
$$\begin{cases} \min z = -5x_1 + 2x_2 - 3x_3 \\ s.t. & 2x_1 + 2x_2 - x_3 \ge 2, \\ 3x_1 - 4x_2 & \le 3, \\ x_2 + 3x_3 \le 5, \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

[3] By simplex method solve of following dual linear program:

(35 deg.)

(D):
$$\begin{cases} \min W = -2x_1 + 3x_2 + 5x_3 \\ s.t. -2x_1 + 3x_2 \ge 5, \\ -2x_1 - 4x_2 + x_3 \ge -2, \\ x_1 + 3x_3 \ge 3, \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

[4] By minimum cost method and Vogel method solve of the transportation problem: (40 deg.)

Demand			
4	7	13	9
14	25	45	24
60	25	39	50
30	23	65	15
	4 14 60	4 7 14 25 60 25	4 7 13 14 25 45 60 25 39

	DOOL E AMMAD	GOOD LOKE
EXAMINERS	PROF. E. AMMAR	

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS

EXAMINATION FOR PROSPECTIVE STUDENTS (4TH YEAR) STUDENTS OF MATHEMATICS

COURSE TITLE: QUANTUM MECHANICS II COURSE CODE: MA4115

JAN 2017 TERM: FIRST TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS

DATE: 10

Ā	nswer	the	following	questions:

1- Complete the following statements:	(30 Marks)
a) A set of vectors $\{\Phi_n\}$ is said to linearly	independent
if	
b) The maximum number of linearly independent vectors in	a space is
called	
c) $\widehat{\boldsymbol{D}}$ is called a linear operator if and only if	· · · · · · · · · · · · · · · · · · ·
and	
d) If \widehat{A} is a Hermitian operator, then all of its eigenvalues are	
e) Eigenvectors corresponding to distinct eigenvalues of a Hermi	tian operator
must be	
f) The matrix elements of the operator \widehat{M} are defined as	
g) The square angular momentum operator in spherical coordina	
form	
h) The mathematical formula of the creation and annihilation	
areandand	
2- a) Use the creation and annihilation operators to find the expectation	on values $\langle x \rangle$
and $\langle x^2 \rangle$.	(15 Marks)
b) Find the Pauli spin matrices.	(15 Marks)
c) Discuss the time independent perturbation theory.	(15 Marks)
3- Drive the radial wave functions.	(25 Marks)
PROF/AHMED AROANRER DR/ABDALLAH A. NA	.HLA

		THE PARTY AND A STABLE A
	PROF/AHMED ABOANBER	DR/ ABDALLAH A. NAHLA
EXAMINERS	DR/	DR/
		With my best wishes

Levy

niversity-Faculty of Science-Depart	ment of Mathematics
Final Exam for the First Semeste	er 2016-2017
Differential geometry(1)	Course Code: MA4107
Total mark: 150 Marks	Time allowed: 2 Hours
	Final Exam for the First Semeste Differential geometry(1)

Answer all the following questions:

First question: (40 Marks)

(a)-Prove that
$$\tau = -\frac{(\alpha'(s)X\alpha''(S)).\alpha'''(s)}{k^2(S)}$$

(b)-Letα(t) be the parameterized curve of R3 defined by

$$\alpha(s) = (a\,cos\frac{s}{\sqrt{a^2+b^2}}\,,a\,sin\frac{s}{\sqrt{a^2+b^2}}\,,\frac{bs}{\sqrt{a^2+b^2}}\,)$$

Compute k, τ , t, nand b.

Second question: (40 Marks)

- (a)-Drive Frenet equations.
- (b)-Prove that $\mathcal{X}(\mathbf{u}, \mathbf{v})$ is a simple surface, where U is open set and

$$X(u,v) = (u,v,f(u,v))$$

(c)- Find the equation of the tangent line of the circular helix at t=0, where

$$\alpha(t) = (a \cos t, a \sin t, bt)$$

Third question: (40 Marks)

- (a)- Show that the distance between corresponding points on two Bertrand curves is constant.
- (b)- Prove that for a plane curve $\int_0^l k(s) ds = 2\pi I$.
- (c)-Find the parameterization of the curve $x_3^2 = 1 x_1$, $x_2^2 = x_1$.

Fourth question: (30 Marks)

(a)- Let
$$\alpha(t) = (t, \frac{1}{2}t^2, \frac{1}{3}t^3)$$
. Compute k, τ at t=1.

- (b) -Let $\alpha: I \to R^3$ be a regular parameterized curve. Prove that $\frac{dt}{ds} = \frac{1}{|\dot{\alpha}|^2} \frac{d^2t}{ds^2} = \frac{\alpha \cdot \alpha}{|\dot{\alpha}|^4}$
- (c) Find the curvature of the curve $x^2=4ay$.

(Best wishes)

Examiners:	1- Prof. Dr. A. E. El-Bagoury	2- Dr. Mervat Elzawy
·		<u></u>

الرباعك

niversity-Faculty of Science-Departs Final Exam for the First Semester	ment of Mathematics
Differential geometry(1)	Course Code: MA4107
Total mark: 150 Marks	Time allowed: 2 Hours
	Final Exam for the First Semeste Differential geometry(1)

Answer all the following questions:

First question: (40 Marks)

(a)-Prove that
$$\tau = -\frac{(\alpha'(s)X\alpha''(s)).\alpha'''(s)}{k^2(s)}$$

(b)-Let $\alpha(t)$ be the parameterized curve of R3 defined by

$$\alpha(s) = (a\,cos\,\frac{s}{\sqrt{a^2+b^2}}\,,a\,sin\,\frac{s}{\sqrt{a^2+b^2}}\,,\frac{bs}{\sqrt{a^2+b^2}}\,)$$

Compute k, t, t, nand b.

Second question: (40 Marks)

(a)-Drive Frenet equations.

(b)-Prove that $\mathcal{X}(\mathbf{u}, \mathbf{v})$ is a simple surface, where U is open set and

$$X(u,v) = (u,v,f(u,v))$$

(c)- Find the equation of the tangent line of the circular helix at t=0, where

$$\alpha(t) = (a \cos t, a \sin t, bt)$$

Third question: (40 Marks)

- (a)- Show that the distance between corresponding points on two Bertrand curves is constant.
- (b)- Prove that for a plane curve $\int_0^l k(s) ds = 2\pi I$.
- (c)-Find the parameterization of the curve $x_3^2 = 1 x_1$, $x_2^2 = x_1$.

Fourth question: (30 Marks)

(a)- Let
$$\alpha(t)=(t,\frac{1}{2}t^2,\frac{1}{3}t^3)$$
. Compute k, τ at t=1.

(c) Find the curvature of the curve $x^2=4ay$.

(Best wishes)

Examiners: 1- Prof. Dr. A. E. El-Bagoury 2- Dr. Mervat Elzawy